Person Tracking and Gesture Recognition in Challenging Visibility Conditions Using 3D Thermal Sensing

Ariel Kapusta and Patrick Beeson

August, 30, 2016
IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)
Problem: Visually Tracking a Person

Challenging visibility:

• Variable lighting
 – Pitch black
 – Nighttime

• Sunlight

• Rain

• Smoke

• Occlusions

• Other people
Proposed Solution: 3D Thermal Sensing
Proposed Solution: 3D Thermal Sensing

Person’s head
Presented Solution: PROWL

The sensor system: Perception for Robotic Operation over Widespread Lighting (PROWL)

- PROWL uses
 - thermal stereo image processing
 - on-board processing

- PROWL performs
 - person tracking
 - gesture recognition.
Presented Solution: PROWL

Can track a human target and recognize gestures well in tested environments:

- Air-conditioned, 72° F, well-lit indoors
- Air-conditioned 72° F, pitch-black indoors
- Warm, 85° F, smoke-filled, well-lit indoors
- Hot, 96° F, sunny outdoors
- Warm, 80° F, nighttime outdoors
Method: Tracking using 3D Thermal Sensing

- Create 3D point cloud from stereo camera pair.
- Track using simple algorithms in point cloud.
PROWL Demo: Additional Hardware

• Mounted PROWL on a mobile robot base (TRACBot)
 – With pan-tilt mount
• Moved robot based on detected gestures

More videos at:

https://personal.traclabs.com/~pbeeson/PROWL/
Demonstration of PROWL system mounted on mobile robot in various visibility conditions
PROWL: Perception for Robotic Operation over Widespread Lighting

- Sensor system
 - 2 thermal cameras
 - 2 RGB cameras
 - Computational core

- Specified and conceived by TRACLabs Inc. under an Army SBIR contract
- Hardware assembled by Carnegie Robotics LLC
PROWL Hardware Specifics

- RGB Cameras
- Computational Core
- Thermal Cameras
Tracking

- Tracks a target in the cloud using ICP
- Fits a sphere of points to the point cloud near the previous known location
- Moves sphere up to find the head
- Ignores points outside the human temperature range
Gesture Recognition

- Fits a cylinder of points to the point cloud relative to the tracked head location
- Looks for left arm raised, right arm raised, or both arms raised.
- Ignores points outside the human temperature range
Evaluation: Environments

Tested in various environments:

• Air-conditioned, 72° F, well-lit indoors
• Air-conditioned 72° F, pitch-black indoors
• Warm, 85° F, smoke-filled, well-lit indoors
• Hot, 96° F, sunny outdoors
• Warm, 80° F, nighttime outdoors
Evaluation: Comparison

- PROWL creates both RGB and thermal point clouds
- Attempting tracking with same algorithm in both
<table>
<thead>
<tr>
<th>Environment</th>
<th>Action</th>
<th>% frame correctly tracked</th>
<th>Using RGB Point Cloud</th>
<th>Using Thermal Point Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoors, well-lit, cool</td>
<td>Walking</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Hiding</td>
<td>4.9</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Outdoors, sunny, hot</td>
<td>Walking</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Indoors, dark, cool</td>
<td>Walking</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Outdoors, dark, warm</td>
<td>Walking</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Indoors, smoke-filled, warm</td>
<td>Walking</td>
<td>11.4</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Notable Points

• Environment can be almost entirely filtered out in air-conditioned indoors
Notable Points

- Darkness and smoke have little impact on thermal vision
Notable Points

• Darkness and smoke have little impact on thermal sensing
Conclusion and Questions

• 3D thermal sensing can be used to track humans
 – Particularly suited for certain environments
 • E.g., cool + indoors

• PROWL demonstrates the feasibility with high success in tested environments

• More videos: https://personal.traclabs.com/~pbeeson/PROWL/
PROWL: Perception for Robotic Operation over Widespread Lighting

- Sensor system
- Generates thermal and RGB point clouds using stereo vision
PROWL: Perception for Robotic Operation over Widespread Lighting

- Sensor system
- Generates thermal and RGB point clouds using stereo vision
- Onboard computational core
 - Runs tracking
 - Runs gesture recognition
Other Methods

• Advanced detection and tracking algorithms
• Sensor fusion
 – RGB + thermal + depth
• Tactile thermal sensing